Spectral theory and non-Normal operators

R. R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

March 14, 2017

Contents

1	Non-Normal operators: some remarks	1
2	Example: $\mathcal{L} = -\frac{d^2}{dx^2} + \mu(x), \ a < x < b$, Dirichlet BC, μ complex valued	1
	This example uses Laplace Transforms and Green functions to obtain a spectral theorem	1

1 Non-Normal operators: some remarks

There is no general theory that applies to (infinite dimensional) non-Normal operators. However, in some cases one can say something. Below we present a few examples.

Related stuff: Laplace Transforms and Green's functions #01 in Point sources and Green's functions and Normal modes #02 in Separation of variables and normal modes.

2 Example:

$\mathcal{L} = -rac{d^2}{dx^2} + \mu(x), \, a < x < b, \, ext{Dirichlet BC}, \, \mu ext{ complex valued}$

Here we consider the eigenvalue problem for the operator

$$\mathcal{L} = -\frac{d^2}{dx^2} + \mu(x), \quad a < x < b, \quad \text{with homogeneous Dirichlet BC}, \tag{2.1}$$

where $\mu = \mu(x)$ is some complex valued function.¹ This operator is self-adjoint, with the standard scalar product, only when μ is real valued. In general \mathcal{L} is not even normal, since (at least for μ in C^2)

$$\mathcal{L}^{\dagger} = -\frac{d^2}{dx^2} + \mu^*(x), \quad \Longrightarrow \quad \mathcal{L} \,\mathcal{L}^{\dagger} - \mathcal{L}^{\dagger} \,\mathcal{L} = 4 \,i \,\sigma' \,\frac{d}{dx} + 2 \,i \,\sigma'', \tag{2.2}$$

where [†] and ^{*} denote adjoints and conjugates, $\sigma = \text{Im}(\mu)$, and the primes denote derivatives with respect to x. On the other hand \mathcal{L} is *symmetric* with respect to the form ²

$$Q(f,g) = \int_a^b f(x) g(x) dx. \qquad (2.3)$$

That is $Q(\mathcal{L} f, g) = Q(f, \mathcal{L} g)$

Nevertheless a spectral theorem, in terms of eigenfunctions and generalized eigenfunctions, applies to this operator, as we show next. For this purpose we consider the pde initial value problem

$$u_t = u_{xx} - \mu u, \ a < x < b \ and \ t > 0, \ with \ u(x,0) = f(x)$$

$$(2.4)$$

and homogeneous Dirichlet BC. Then the Laplace Transform $U = \int_0^\infty e^{-st} u \, dt$ satisfies

$$-U_{xx} + \mu U + s U = \mathcal{L} U + s U = f, \qquad (2.5)$$

 $^{^1}$ Say, μ is piecewise smooth. Note that L^2 is probably enough.

 $^{^2}$ For real valued f and $g,\,Q$ is the standard scalar product. However, ${\cal L}$ is not a real operator.

$\mathbf{2}$ Spectral theory and non-Normal operators.

(2.13)

Rosales, MIT

with U = 0 at x = a, b. We write the resolvent $R = (\mathcal{L} + s)^{-1}$ using the Green's function.³ Namely

$$U(s, x) = \int_{a}^{b} G(x, y, s) f(y) \, dy \quad \text{where} \quad G = \frac{1}{W} \begin{cases} v_1(x, s) \, v_2(y, s) & \text{for} \quad x \le y, \\ v_1(y, s) \, v_2(x, s) & \text{for} \quad x \ge y, \end{cases}$$
(2.6)

where

1. $v_1 = v_1(x, s)$ satisfies $-v_1'' + (\mu + s)v_1 = 0$ with $v_1 = 0$ and $v_1' = 1$ at x = a. (2.7)

- **2.** $v_2 = v_2(x, s)$ satisfies $-v_2'' + (\mu + s)v_2 = 0$ with $v_2 = 0$ and $v_2' = 1$ at x = b. (2.8)
- **3.** $W = W(s) = v'_1 v_2 v_1 v'_2$ is the Wronskian.⁴ (2.9)Note: W = 0 if and only if $v_2 \propto v_1$ and $\lambda = -s$ is an **eigenvalue** for \mathcal{L} . (2.10)

Furthermore (see remark **2.1**)

- $v_1 \sim \frac{\sinh(\sqrt{s}\,(x-a))}{\sqrt{s}}.$ **4.** $v_1 = v_1(x, s)$ is an entire function of s. For $|s| \gg 1$, (2.11)
- $v_2 \sim \frac{\sinh(\sqrt{s}\,(x-b))}{\sqrt{s}}.$ **5.** $v_2 = v_2(x, s)$ is an entire function of s. For $|s| \gg 1$, (2.12) $W \sim -\frac{\sinh(\sqrt{s}(b-a))}{\sqrt{s}}.$
- For $|s| \gg 1$, **6.** W is an entire function.

7. For
$$|s| \gg 1$$
, $G \sim \frac{-1}{\sqrt{s} \sinh(\sqrt{s}(b-a))} \begin{cases} \sinh(\sqrt{s}(x-a)) \sinh(\sqrt{s}(y-b)) & \text{for } x \leq y. \\ \sinh(\sqrt{s}(y-a)) \sinh(\sqrt{s}(x-b)) & \text{for } x \geq y. \end{cases}$ (2.14)

From this last formula we see that G vanishes as $|s| \to \infty$, at least as fast as $1/\sqrt{s}$.

We now invoke the inverse Laplace Transform, which states that

$$u = \frac{1}{2\pi i} \int_{\Gamma} U(s, x) e^{s t} ds, \qquad (2.15)$$

where Γ is a path in the complex plane of the form $s = a + i \mu$, with $-\infty < \mu < \infty$ and a > 0 large enough. From the results above we know that:

A. U has only pole singularities, which correspond to the zeros of W. Let them be $\{s_n\}$.⁵

B. U vanishes for $|s| \to \infty$.

Using these results we can "move" the path Γ to the left $(a \to -\infty)$. Then, every time the path crosses a pole of U, it picks up a contribution from the pole. In particular, if the pole is simple, the contribution is the residue of Ue^{st} there. Thus (2.15) yields

$$u = \sum_{n} u_n(x, t), \qquad (2.16)$$

where u_n is the contribution from the pole at s_n . However, (2.16) is, generally, not a mode expansion. Generalized modes with time dependences of the form $t^{j} e^{s_{n} t}$ can arise as well.

Remark 2.1 The asymptotic estimates in (2.11 – 2.12) follow from WKBJ theory.

To see that v_1 is an entire function of s, note that it can be written as the solution to the Volterra integral equation⁶

$$v_1(x,s) = \frac{\sinh(\sqrt{s}\,(x-a))}{\sqrt{s}} + \int_a^x \frac{\sinh(\sqrt{s}\,(x-y))}{\sqrt{s}}\,\mu(y)\,v_1(y,s)\,dy,\tag{2.17}$$

with a similar equation for v_2 — note that $S(\chi, s) = (1/\sqrt{s}) \sinh(\sqrt{s}\chi)$ is an entire function of s.

³ By definition: the points $\lambda = -s$ at which R is singular constitute the spectrum of \mathcal{L} .

⁴ It is easy to see that W' = 0, so that W depends on s only.

 $^{^{5}}$ Note that we know nothing about these zeros, other than there is a countable number of them, and they are isolated.

There cannot be a finite number, else W would be a polynomial, which (2.13) excludes.

 $^{^{6}}$ Differentiating (2.17) it is easy to show that its solution satisfies the problem for v_{1} .

Rosales, MIT

Spectral theory and non-Normal operators. 3

We can write (at least formally) where $I_0(x, s) = S(x - a, s)$ and $I_{n+1}(x, s) = \int_a^x S(x - y, s) \mu(y) I_n(y, s) dy$. However, for n > 0, (2.18)

$$I_n = \int_{a < y_1 < y_2 < \dots < x} S(x - y_n) \,\mu(y_n) \, S(y_n - y_{n-1}) \,\mu(y_{n-1}) \,\dots \, S(y_2 - y_1) \,\mu(y_1) \, S(y_1 - a) \, d \, \vec{y}, \tag{2.19}$$

where, for simplicity, we have not displayed the argument s. Since the argument ξ for S is restricted to the range $0 < \chi < b - a$, it should be clear that: in any bounded region of the s-complex plane, there is a constant K such that $|S| \leq K$. Similarly, let

M be a bound on μ . Then (2.19) shows that

$$I_n \le K^{n+1} M^n \, \frac{(b-a)^n}{n!}. \tag{2.20}$$

It follows that (2.18) converges uniformly in

any bounded region of the complex plane. Thus it solves (2.17), and it is entire (since each if the I_n 's is).

THE END.