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1 Non-Normal operators: some remarks

There is no general theory that applies to (infinite dimensional) non-Normal operators. However, in some cases one

can say something. Below we present a few examples.

Related stuff: Laplace Transforms and Green’s functions #01 in Point sources and Green’s functions

and Normal modes #02 in Separation of variables and normal modes.

2 Example:

L = − d2

dx2 + µ(x), a < x < b, Dirichlet BC, µ complex valued

Here we consider the eigenvalue problem for the operator

L = − d2

dx2
+ µ(x), a < x < b, with homogeneous Dirichlet BC, (2.1)

where µ = µ(x) is some complex valued function. 1 This operator is self-adjoint, with the standard scalar product,

only when µ is real valued. In general L is not even normal, since (at least for µ in C2)

L† = − d2

dx2
+ µ∗(x), =⇒ LL† − L† L = 4 i σ′

d

dx
+ 2 i σ′ ′, (2.2)

where † and ∗ denote adjoints and conjugates, σ = Im(µ),

and the primes denote derivatives with respect to x. On

the other hand L is symmetric with respect to the form 2 Q(f, g) =
∫ b

a
f(x) g(x) dx. (2.3)

That is Q(L f, g) = Q(f, L g)
Nevertheless a spectral theorem, in terms of eigenfunctions and generalized eigenfunctions, applies to this operator,

as we show next. For this purpose we consider the pde initial value problem

ut = uxx − µu, a < x < b and t > 0, with u(x, 0) = f(x) (2.4)

and homogeneous Dirichlet BC. Then the Laplace Transform U =
∫∞
0
e−s tudt satisfies

−Uxx + µU + sU = LU + sU = f, (2.5)

1 Say, µ is piecewise smooth. Note that L2 is probably enough.
2 For real valued f and g, Q is the standard scalar product. However, L is not a real operator.
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with U = 0 at x = a, b. We write the resolvent R = (L+ s)−1 using the Green’s function. 3 Namely

U(s, x) =

∫ b

a

G(x, y, s) f(y) dy where G =
1

W

{
v1(x, s) v2(y, s) for x ≤ y,
v1(y, s) v2(x, s) for x ≥ y,

(2.6)

where

1. v1 = v1(x, s) satisfies −v′ ′1 + (µ+ s) v1 = 0 with v1 = 0 and v′1 = 1 at x = a. (2.7)

2. v2 = v2(x, s) satisfies −v′ ′2 + (µ+ s) v2 = 0 with v2 = 0 and v′2 = 1 at x = b. (2.8)

3. W = W (s) = v′1 v2 − v1 v
′
2 is the Wronskian. 4 (2.9)

Note: W = 0 if and only if v2 ∝ v1 and λ = −s is an eigenvalue for L. (2.10)

Furthermore (see remark 2.1)

4. v1 = v1(x, s) is an entire function of s. For |s| � 1, v1 ∼
sinh(

√
s (x− a))√
s

. (2.11)

5. v2 = v2(x, s) is an entire function of s. For |s| � 1, v2 ∼
sinh(

√
s (x− b))√
s

. (2.12)

6. W is an entire function. For |s| � 1, W ∼ − sinh(
√
s (b− a))√
s

. (2.13)

7. For |s| � 1, G ∼ −1√
s sinh(

√
s(b− a))

{
sinh(

√
s (x− a)) sinh(

√
s (y − b)) for x ≤ y.

sinh(
√
s (y − a)) sinh(

√
s (x− b)) for x ≥ y.

(2.14)

From this last formula we see that G vanishes as |s| → ∞, at least as fast as 1/
√
s.

We now invoke the inverse Laplace Transform, which states that

u =
1

2π i

∫
Γ

U(s, x) es t ds, (2.15)

where Γ is a path in the complex plane of the form s = a+ i µ, with −∞ < µ <∞ and a > 0 large enough. From

the results above we know that:

A. U has only pole singularities, which correspond to the zeros of W . Let them be {sn}. 5

B. U vanishes for |s| → ∞.

Using these results we can “move” the path Γ to the left (a→ −∞). Then, every time the path crosses a pole of U ,

it picks up a contribution from the pole. In particular, if the pole is simple, the contribution is the residue of U es t

there. Thus (2.15) yields

u =
∑
n

un(x, t), (2.16)

where un is the contribution from the pole at sn. However, (2.16) is, generally, not a mode expansion.

Generalized modes with time dependences of the form tj esn t can arise as well.

Remark 2.1 The asymptotic estimates in (2.11 – 2.12) follow from WKBJ theory.

To see that v1 is an entire function of s, note that it can be written as the solution to the Volterra integral equation 6

v1(x, s) =
sinh(

√
s (x− a))√
s

+

∫ x

a

sinh(
√
s (x− y))√
s

µ(y) v1(y, s) dy, (2.17)

with a similar equation for v2 — note that S(χ, s) = (1/
√
s) sinh(

√
s χ) is an entire function of s.

3 By definition: the points λ = −s at which R is singular constitute the spectrum of L.
4 It is easy to see that W ′ = 0, so that W depends on s only.
5 Note that we know nothing about these zeros, other than there is a countable number of them, and they are isolated.

There cannot be a finite number, else W would be a polynomial, which (2.13) excludes.
6 Differentiating (2.17) it is easy to show that its solution satisfies the problem for v1.
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We can write (at least formally) v1 =
∑∞

0 In (2.18)

where I0(x, s) = S(x− a, s) and In+1(x, s) =∫ x

a
S(x− y, s)µ(y) In(y, s) dy. However, for n > 0,

In =

∫
a<y1<y2<···<x

S(x− yn)µ(yn)S(yn − yn−1)µ(yn−1) . . . S(y2 − y1)µ(y1)S(y1 − a) d ~y, (2.19)

where, for simplicity, we have not displayed the argument s. Since the argument ξ for S is restricted to the range

0 < χ < b− a, it should be clear that: in any bounded region of the s-complex plane, there is a constant K such that

|S| ≤ K. Similarly, let

M be a bound on µ. Then (2.19) shows that In ≤ Kn+1Mn (b−a)n

n! . (2.20)

It follows that (2.18) converges uniformly in

any bounded region of the complex plane. Thus it solves (2.17), and it is entire (since each if the In’s is).

THE END.


