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1 Non-Normal operators: some remarks

There is no general theory that applies to (infinite dimensional) non-Normal operators. However, in some cases one
can say something. Below we present a few examples.

Related stuff: Laplace Transforms and Green's functions #01 in Point sources and Green’s functions

and Normal modes #02 in Separation of variables and normal modes.

2 Example:

2 . .
L= —% + p(x), a < ¢ < b, Dirichlet BC, p complex valued
Here we consider the eigenvalue problem for the operator
d2
L= T + u(x), a<z<b, with homogeneous Dirichlet BC, (2.1)
x

1

where p = p(x) is some complex valued function. ' This operator is self-adjoint, with the standard scalar product,

only when g is real valued. In general £ is not even normal, since (at least for p in C?)
d2

rr=__
dx?

d
+p*(z), = ,CET—£TE=4Z'O'/%+27:J”, (2.2)

where T and * denote adjoints and conjugates, o = Im(u),

and the primes denote derivatives with respect to . On

the other hand £ is symmetric with respect to the form 2 Q(f, 9) = f: f(x) g(x) dx. (2.3)
That is Q(L f, g) = Q(f, Lg)

Nevertheless a spectral theorem, in terms of eigenfunctions and generalized eigenfunctions, applies to this operator,
as we show next. For this purpose we consider the pde initial value problem

Ut = Uy — pU, a<x<band t>0, with u(z,0)= f(z) (2.4)
and homogeneous Dirichlet BC. Then the Laplace Transform U = fooo e~ %ty dt satisfies

—Upe + pU+sU=LU+sU = f, (2.5)

1 Say, u is piecewise smooth. Note that L? is probably enough.
2 For real valued f and g, Q is the standard scalar product. However, £ is not a real operator.
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with U = 0 at @ = a, b. We write the resolvent R = (£ + s)~! using the Green’s function.® Namely

U(s, z) = /ab G(z,y,s) f(y)dy where G = % { ZE;: :3 Z;Ez: 3 EZE f; ; Z: (2.6)

where
1. vy = v (=, s) satisfies —v}’ + (u+ s)v; = 0 with v; =0 and v = 1 at x = a. (2.7)
2. vy = vo(x, s) satisfies —vh' + (u+ s) v = 0 with vo = 0 and v = 1 at @ = b. (2.8)
3. W =W(s) = v} vy — vy v} is the Wronskian. 4 (2.9)
Note: W = 0 if and only if v &< v1 and A = —s is an eigenvalue for L. (2.10)

Furthermore (see remark 2.1)

sinh(y/s (x — a)).

4. vy =vi(x, s) is an entire function of s. For |s| > 1, vy~ 75 (2.11)
s
inh —-b
5. v = va(x, s) is an entire function of s. For |s| > 1, Vg ~ Sm(\/g\/(;)) (2.12)
inh(y/5 (b —
6. W is an entire function. For |s| > 1, W~ —W. (2.13)
s
-1 sinh — sinh — fi <uy.
7. For |s| > 1, G sinh(v/5 (@ = a)) sinh(v/5 (y = b)) for @ <y (2.14)
Vs sinh(y/s(b—a)) | sinh(y/s(y —a)) sinh(y/s(x —0b)) for z>y.
From this last formula we see that G vanishes as |s| — 0o, at least as fast as 1/4/s.
We now invoke the inverse Laplace Transform, which states that
1 st
u=— [ U(s, x)e’"ds, (2.15)
211 r

where I' is a path in the complex plane of the form s = a + ¢y, with —oo < 4 < 0o and a > 0 large enough. From
the results above we know that:

A. U has only pole singularities, which correspond to the zeros of W. Let them be {s,}.°

B. U vanishes for |s| — oo.

Using these results we can “move” the path T" to the left (a — —o0). Then, every time the path crosses a pole of U,
it picks up a contribution from the pole. In particular, if the pole is simple, the contribution is the residue of U e**
there. Thus (2.15) yields

u=" up(x,t), (2.16)

where w,, is the contribution from the pole at s,. However, (2.16) is, generally, not a mode expansion.

t

Generalized modes with time dependences of the form t7 e5»* can arise as well.

Remark 2.1 The asymptotic estimates in (2.11 — 2.12) follow from WKBJ theory.
To see that vy is an entire function of s, note that it can be written as the solution to the Volterra integral equation®

sinh(y/s (z — a)) “ sinh(y/s (z — y))
i M-

with a similar equation for va — note that S(x, s) = (1/v/s) sinh(y/s x) is an entire function of s.

vi(z, s) = w(y) viy, s)dy, (2.17)

3 By definition: the points A = —s at which R is singular constitute the spectrum of L.

41t is easy to see that W’ = 0, so that W depends on s only.

5 Note that we know nothing about these zeros, other than there is a countable number of them, and they are isolated.
There cannot be a finite number, else W would be a polynomial, which (2.13) excludes.

6 Differentiating (2.17) it is easy to show that its solution satisfies the problem for v;.



Rosales, MIT Spectral theory and non-Normal operators. 3

We can write (at least formally) v =0 In (2.18)
where Ip(z, s) = S(z —a, s) and L11(x, s) =
L7 S(x —y, s) u(y) In(y, s)dy. However, for n >0,

I, = / S( = yn) W(Yn) S(Yn = Yn—1) W(Yn—1) --- S(y2 — y1) u(y1) S(y1 — a) d, (2.19)
a<yi<yz2<---<z

where, for simplicity, we have not displayed the argument s. Since the argument £ for S is restricted to the range
0 < x < b—a, it should be clear that: in any bounded region of the s-complex plane, there is a constant K such that
|S| < K. Similarly, let

M be a bound on p. Then (2.19) shows that I, < Kt pmm % (2.20)
1t follows that (2.18) converges uniformly in

any bounded region of the complex plane. Thus it solves (2.17), and it is entire (since each if the I,’s is).

THE END.



