Spectral theory and non-Normal operators

R. R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

March 14, 2017

Contents

1 Non-Normal operators: some remarks
2 Example: $\mathcal{L}=-\frac{d^{2}}{d x^{2}}+\mu(x), a<x<b$, Dirichlet BC, μ complex valued 1
This example uses Laplace Transforms and Green functions to obtain a spectral theorem 1

1 Non-Normal operators: some remarks

There is no general theory that applies to (infinite dimensional) non-Normal operators. However, in some cases one can say something. Below we present a few examples.
Related stuff: Laplace Transforms and Green's functions \#01 in Point sources and Green's functions and \quad Normal modes $\# 02$ in Separation of variables and normal modes.

2 Example:
 $$
\mathcal{L}=-\frac{d^{2}}{d x^{2}}+\mu(x), a<x<b, \text { Dirichlet } B C, \mu \text { complex valued }
$$

Here we consider the eigenvalue problem for the operator

$$
\begin{equation*}
\mathcal{L}=-\frac{d^{2}}{d x^{2}}+\mu(x), \quad a<x<b, \quad \text { with homogeneous Dirichlet BC, } \tag{2.1}
\end{equation*}
$$

where $\mu=\mu(x)$ is some complex valued function. ${ }^{1}$ This operator is self-adjoint, with the standard scalar product, only when μ is real valued. In general \mathcal{L} is not even normal, since (at least for μ in C^{2})

$$
\begin{equation*}
\mathcal{L}^{\dagger}=-\frac{d^{2}}{d x^{2}}+\mu^{*}(x), \quad \Longrightarrow \quad \mathcal{L} \mathcal{L}^{\dagger}-\mathcal{L}^{\dagger} \mathcal{L}=4 i \sigma^{\prime} \frac{d}{d x}+2 i \sigma^{\prime \prime} \tag{2.2}
\end{equation*}
$$

where ${ }^{\dagger}$ and * denote adjoints and conjugates, $\sigma=\operatorname{Im}(\mu)$, and the primes denote derivatives with respect to x. On the other hand \mathcal{L} is symmetric with respect to the form ${ }^{2}$

$$
\begin{equation*}
Q(f, g)=\int_{a}^{b} f(x) g(x) d x \tag{2.3}
\end{equation*}
$$

That is $\boldsymbol{Q}(\mathcal{L} \boldsymbol{f}, \boldsymbol{g})=\boldsymbol{Q}(\boldsymbol{f}, \mathcal{L} \boldsymbol{g})$
Nevertheless a spectral theorem, in terms of eigenfunctions and generalized eigenfunctions, applies to this operator, as we show next. For this purpose we consider the pde initial value problem

$$
\begin{equation*}
u_{t}=u_{x x}-\mu u, \quad a<x<b \text { and } t>0, \text { with } u(x, 0)=f(x) \tag{2.4}
\end{equation*}
$$

and homogeneous Dirichlet BC. Then the Laplace Transform $\boldsymbol{U}=\int_{0}^{\infty} \boldsymbol{e}^{-s t} \boldsymbol{u} \boldsymbol{d} \boldsymbol{t}$ satisfies

$$
\begin{equation*}
-U_{x x}+\mu U+s U=\mathcal{L} U+s U=f \tag{2.5}
\end{equation*}
$$

[^0]with $U=0$ at $x=a, b$. We write the resolvent $R=(\mathcal{L}+s)^{-1}$ using the Green's function. ${ }^{3}$ Namely
\[

U(s, x)=\int_{a}^{b} G(x, y, s) f(y) d y \quad where \quad G=\frac{1}{W} $$
\begin{cases}v_{1}(x, s) v_{2}(y, s) & \text { for } \quad x \leq y \tag{2.6}\\ v_{1}(y, s) v_{2}(x, s) & \text { for } \quad x \geq y\end{cases}
$$
\]

where

1. $v_{1}=v_{1}(x, s)$ satisfies $-v_{1}^{\prime \prime}+(\mu+s) v_{1}=0$ with $v_{1}=0$ and $v_{1}^{\prime}=1$ at $x=a$.
2. $v_{2}=v_{2}(x, s)$ satisfies $-v_{2}^{\prime \prime}+(\mu+s) v_{2}=0$ with $v_{2}=0$ and $v_{2}^{\prime}=1$ at $x=b$.
3. $W=W(s)=v_{1}^{\prime} v_{2}-v_{1} v_{2}^{\prime}$ is the Wronskian. ${ }^{4}$

Note: $\boldsymbol{W}=\mathbf{0}$ if and only if $\boldsymbol{v}_{\mathbf{2}} \propto \boldsymbol{v}_{1}$ and $\boldsymbol{\lambda}=-\boldsymbol{s}$ is an eigenvalue for \mathcal{L}.
Furthermore (see remark 2.1)
4. $v_{1}=v_{1}(x, s)$ is an entire function of s. For $|s| \gg 1$,
$v_{1} \sim \frac{\sinh (\sqrt{s}(x-a))}{\sqrt{s}}$.
5. $v_{2}=v_{2}(x, s)$ is an entire function of s. For $|s| \gg 1$,
$v_{2} \sim \frac{\sinh (\sqrt{s}(x-b))}{\sqrt{s}}$.
6. W is an entire function.

$$
\begin{equation*}
\text { For }|s| \gg 1 \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
W \sim-\frac{\sinh (\sqrt{s}(b-a))}{\sqrt{s}} \tag{2.12}
\end{equation*}
$$

7. For $|s| \gg 1, \quad G \sim \frac{-1}{\sqrt{s} \sinh (\sqrt{s}(b-a))} \begin{cases}\sinh (\sqrt{s}(x-a)) \sinh (\sqrt{s}(y-b)) & \text { for } \quad x \leq y . \\ \sinh (\sqrt{s}(y-a)) \sinh (\sqrt{s}(x-b)) & \text { for } \quad x \geq y .\end{cases}$

From this last formula we see that G vanishes as $|s| \rightarrow \infty$, at least as fast as $1 / \sqrt{s}$.
We now invoke the inverse Laplace Transform, which states that

$$
\begin{equation*}
u=\frac{1}{2 \pi i} \int_{\Gamma} U(s, x) e^{s t} d s \tag{2.15}
\end{equation*}
$$

where Γ is a path in the complex plane of the form $s=a+i \mu$, with $-\infty<\mu<\infty$ and $a>0$ large enough. From the results above we know that:

A. \boldsymbol{U} has only pole singularities, which correspond to the zeros of \boldsymbol{W}. Let them be $\left\{s_{n}\right\} .{ }^{5}$

B. \boldsymbol{U} vanishes for $|s| \rightarrow \infty$.

Using these results we can "move" the path Γ to the left $(a \rightarrow-\infty)$. Then, every time the path crosses a pole of U, it picks up a contribution from the pole. In particular, if the pole is simple, the contribution is the residue of $U e^{s t}$ there. Thus (2.15) yields

$$
\begin{equation*}
u=\sum_{n} u_{n}(x, t) \tag{2.16}
\end{equation*}
$$

where u_{n} is the contribution from the pole at s_{n}. However, (2.16) is, generally, not a mode expansion. Generalized modes with time dependences of the form $t^{j} e^{s_{n} t}$ can arise as well.

Remark 2.1 The asymptotic estimates in (2.11-2.12) follow from WKBJ theory.
To see that v_{1} is an entire function of s, note that it can be written as the solution to the Volterra integral equation ${ }^{6}$

$$
\begin{equation*}
v_{1}(x, s)=\frac{\sinh (\sqrt{s}(x-a))}{\sqrt{s}}+\int_{a}^{x} \frac{\sinh (\sqrt{s}(x-y))}{\sqrt{s}} \mu(y) v_{1}(y, s) d y \tag{2.17}
\end{equation*}
$$

with a similar equation for v_{2} - note that $S(\chi, s)=(1 / \sqrt{s}) \sinh (\sqrt{s} \chi)$ is an entire function of s.

[^1]We can write (at least formally)

$$
\begin{equation*}
v_{1}=\sum_{0}^{\infty} I_{n} \tag{2.18}
\end{equation*}
$$

where $I_{0}(x, s)=S(x-a, s)$ and $I_{n+1}(x, s)=$
$\int_{a}^{x} S(x-y, s) \mu(y) I_{n}(y, s) d y$. However, for $n>0$,

$$
\begin{equation*}
I_{n}=\int_{a<y_{1}<y_{2}<\cdots<x} S\left(x-y_{n}\right) \mu\left(y_{n}\right) S\left(y_{n}-y_{n-1}\right) \mu\left(y_{n-1}\right) \ldots S\left(y_{2}-y_{1}\right) \mu\left(y_{1}\right) S\left(y_{1}-a\right) d \vec{y} \tag{2.19}
\end{equation*}
$$

where, for simplicity, we have not displayed the argument s. Since the argument ξ for S is restricted to the range $0<\chi<b-a$, it should be clear that: in any bounded region of the s-complex plane, there is a constant K such that $|S| \leq K$. Similarly, let
M be a bound on μ. Then (2.19) shows that $\quad I_{n} \leq K^{n+1} M^{n} \frac{(b-a)^{n}}{n!}$.
It follows that (2.18) converges uniformly in
any bounded region of the complex plane. Thus it solves (2.17), and it is entire (since each if the I_{n} 's is).

THE END.

[^0]: ${ }^{1}$ Say, μ is piecewise smooth. Note that L^{2} is probably enough.
 ${ }^{2}$ For real valued f and g, Q is the standard scalar product. However, \mathcal{L} is not a real operator.

[^1]: ${ }^{3}$ By definition: the points $\lambda=-s$ at which R is singular constitute the spectrum of \mathcal{L}.
 ${ }^{4}$ It is easy to see that $W^{\prime}=0$, so that W depends on s only.
 ${ }^{5}$ Note that we know nothing about these zeros, other than there is a countable number of them, and they are isolated. There cannot be a finite number, else W would be a polynomial, which (2.13) excludes.
 ${ }^{6}$ Differentiating (2.17) it is easy to show that its solution satisfies the problem for v_{1}.

